Biomedical
Biomedical testing
Sansi Test provides solutions for testing of medical devices, pharmaceuticals, packaging, biomaterials, etc.Sansi Test brings a wealth of knowledge to the biomedical industry, serving as a strategic partner to companies of all sizes. Our equipment and services are primed to help you investigate new technologies and ensure product quality, all while maintaining the highest levels of data integrity and security.
Drug delivery device and container testing
The pharmaceutical industry relies on mechanical testing to evaluate drug delivery systems and their associated packaging. Drug delivery systems can utilize dermal, subcutaneous, intramuscular, oral, or nasal routes and come in a variety of different packaging formats. Universal testing systems are used throughout the product development process to help identify suitable materials, evaluate delivery mechanisms, perform design validation, validate manufacturing processes, and enable proper QC measures. The most common applications are related to needle based injection systems and involve either functional testing based on industry standards such as ISO 11040 and ISO 11608 or usability testing of products to supplement human factor testing.
Medical consumables and packaging testing
Medical consumables represent the largest subsection of biomedical testing and include a wide variety of single-use products such as surgical tools, PPE, wound closure products, specimen collection products, and more. These products are typically either FDA class I or II medical devices, which, despite having less stringent test requirements, are produced in such large quantities that care must be taken to accommodate high volume testing. To compensate for the larger volumes, throughput and repeatability become critical test requirements, addressed through specialized fixturing, efficient operator workflows, and intuitive software.
Cardiovascular and interventional device testing
For both diagnostic and therapeutic purposes, the market for interventional vascular devices has grown exponentially. Products such as guidewires and catheters are essential for the mapping of vasculature, removal of blockages, and placement of stents or implants. Assessing the material and coating properties of these products is essential for ensuring they will perform as expected in vivo. Testing in vitro can also be accomplished using turnkey systems built to mimic real world conditions with anatomical models, measuring the forces related to the deployment and removal of these devices. Implanted devices such as replacement valves and stents are also tested for long term durability using dynamic systems to validate the long terms responses of these products to body conditions.
Biomaterials testing
Biomaterials include the materials found in nature, the human body, and other animal species. These materials can be hard tissues such as bone or dental enamel or soft, such as tendons and ligaments. Biological variation and environmental factors affect the mechanical properties of these materials. They are also anisotropic and nonhomogeneous, making them challenging materials to re-create or engineer outside of nature.
Orthopedic implant testing
Orthopedic implants are implants that support the skeletal system. These include bone screws, plates, rods and pins for fracture repair, as well as entire artificial hips, knees, and spinal components. Orthopedic implants can be temporarily inserted into the body to assists a patient’s healing, or can be inserted into the body with the intent that the implant will outlive the patient. Depending on their use, orthopedic implants are typically considered to be Class II or Class III medical devices by the FDA and require a range and combination of static and fatigue mechanical testing.
Dental device testing
Dental materials are typically composed of metal, elastomers, and polymers. Restorative and prosthodontic devices are often composed of multiple materials that require mechanical testing to determine how these materials interact to form the finished device. A dental implant is a metal post, typically titanium, that replaces the patient’s entire tooth. Fatigue testing represents the most common form of mechanical testing performed on dental implants, following international standards to evaluate the expected wear of repeated use.